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SUMMARY

In the present study, the spatial instability for a two-dimensional viscous liquid sheet, which is thin-
ning with time, has been analysed. The study includes the derivation of a spatial dispersion equation,
numerical solutions for the growth rate of sinuous disturbances, and parameter sensitivity studies. For
a given wave number, the growth rate of the disturbance is essentially a function of Weber number,
Reynolds number, and gas=liquid density ratio. The analysis indicates that the cut-o� wave number of
the disturbance becomes larger with an increase in Weber number or gas=liquid density ratio. Thus,
the liquid sheet should produce �ner drops. When the Reynolds number decreases, the higher viscosity
has a greater damping e�ect on shorter waves than longer waves. This could explain that only large
drops and ligaments were observed in past measurements for the disintegration of a very viscous sheet.
The spatial instability results of the present study were also compared with the temporal theory. The
importance of spatial analysis was found and demonstrated for the cases of low Weber numbers. The
temporal theory underestimates growth rates when the Weber number is less than 100. The discrepancy
between the two theories increases as the Weber number further decreases. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The instability of a thin liquid sheet has been extensively studied for many decades because
of relevance to spray nozzle performance. In the past, Squire [1] applied the temporal method
of Lamb [2] to the instability analysis of sinuous disturbances on a two-dimensional inviscid
liquid sheet moving in still air. Taylor [3, 4] studied the dynamics and formation of thin
liquid sheets of constant thickness to understand the important phenomena of sheet breakup
processes. York et al. [5] predicted maximum instability for the varicose wave. Haggerty and
Shea [6] analysed a one-sided sheet and derived wave dispersion equations describing sinuous
and varicose waves. These studies reported disturbance wave growth and the most-unstable
wavelength on a sheet surface using wave dispersion equations. Their work was extended by
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others [7–9] to consider a viscous liquid �lm of diminishing thickness with either sinuous
or varicose waves for a plane liquid sheet. Most of the studies [1–11] demonstrated that
liquid sheets break up into drops through aerodynamic instability. Unstable waves can grow
exponentially on the sheet surface, and then detach at the leading edge to form drops when
their amplitudes are greater than a critical value. Recently, a more general type of analysis
of the instability of a two-dimensional viscous liquid sheet was made by Li and Tankin [12].
Sirignano and his co-workers [13–15] investigated the linear and non-linear instability of
planar liquid sheets using a vortex-dynamics model. However, most of the previous studies
were limited to temporal instability analysis.
One of the serious weaknesses in the existing temporal theory for hydrodynamic instability

is that disturbances are assumed to grow temporally everywhere. In reality, most �uid oscilla-
tions have amplitudes that are constant with time, but grow in a spatial direction. Gaster [16]
showed that for small rates of ampli�cation, the disturbance frequencies determined from tem-
poral theory were approximately equal to those of the spatial analysis. He therefore concluded
that the analysis should be done spatially for large ampli�cation rates [17]. Later, several spa-
tial studies demonstrated the important distinction for circular liquid jets [18, 19] and for liquid
curtain �ows [20, 21]. Since then, the spatial instability analysis for a liquid sheet has received
more attention than before. Creighton and Lin [22] analysed the spatial spray formation of
liquid sheets based on an energy budget. Li [23] utilized a perturbation analysis for the spatial
instability study of a thin moving plane liquid sheet, and his results indicated that the spatial
ampli�cation rate depends strongly on the gas-to-liquid density ratio. Ibrahim [24] followed
Levich’s [25] mathematical approach to formulate the spatial dispersion equations of sinuous
and varicose disturbances, and also compared his spatial growth rates with the temporal data
of Li and Tankin [12]. However, all of these spatial analyses assumed that the sheet thickness
is constant, and could not be applicable to most cases in reality. Although De Luca and Costa
[26] developed a multiple-scale approach to obtain the spatial dispersion relations for a liquid
sheet of non-uniform thickness, the role of viscosity in the evolution process of the sheet
instability was eliminated with an inviscid approximation in the study.
In the present study, a spatial instability analysis was conducted for a two-dimensional vis-

cous liquid sheet of non-constant thickness, which is a function of time. The primary goals
included deriving a spatial dispersion equation, using numerical methods to solve a system of
non-linear equations, comparing results with temporal analysis, and conducting a sensitivity
study on critical parameters. Contrary to temporal theory, the wave number in spatial theory is
complex and the wave growth rate is represented by the imaginary part of the number. The sys-
tem of non-linear equations obtained from the real and imaginary parts of the spatial dispersion
equation was solved simultaneously using the Newton–Raphson method. Results of the spatial
instability analysis were compared with those of the temporal analysis made by Dombrowski
and Johns [9]. Signi�cant di�erences were found between temporal and spatial analysis for the
cases of low Weber numbers. This result is similar to the spatial analysis for liquid cylindrical
jets, made by Keller et al. [18] and Lin and Kang [19]. They found that the spatial theory
predicted di�erent results from those of temporal analysis for low-speed �ow conditions.

2. GOVERNING EQUATIONS

For the present study, a viscous liquid sheet, which is thinning with time and moving in the
x-direction with velocity U through stationary gas, is considered and shown in Figure 1. The
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Figure 1. Sinuous disturbances of a viscous liquid sheet.

gas is assumed to be incompressible and inviscid. The linearized governing equations for the
�uids subjected to sinuous perturbations in the liquid–gas interfaces are:

∇ · Vj=0 and �j@tVj=−∇pj +∇ · �j (1)

where j=1 denotes the gas, j=2 denotes the liquid, @t is the partial di�erential operator
with respect to time t, and ∇ is a gradient operator. V is the velocity perturbation vector, p
is the pressure perturbation, and � is the shear stress. Note that the gas viscous stresses are
zero in Equation (1) due to the inviscid gas assumption. For inviscid �uid �ow, the velocity
potential  satis�es the Laplace equation:

∇2 =0 (2)

If the velocity potential  is set to be equal to @t�, the horizontal and vertical gas pertur-
bation velocities can be written as

u1 = @t(@x�) and v1 = @t(@y�) (3)

Thus, the gas pressure perturbation may also be obtained from the integrated momentum
equation for the inviscid gas in Equation (1):

p1 = − �1@2t � (4)

It is well known that there are two types of oscillations on liquid sheet surfaces, namely
sinuous and varicose. The study of Dombrowski and Hooper [8] showed that the degree of
varicose instability is much less than that of the sinuous mode. In other words, sinuous waves
can be expected to predominate during the breakup of a �lm. Therefore, in the present study,
only sinuous oscillation was considered for the analysis of the wave growth.
In contrast to the temporal method, both wave number and frequency in spatial theory are in

a complex form (i.e. wave number k= kr+iki and frequency != i!i), where ki represents the
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spatial growth rate for a given wave number kr and frequency !i. For a sinusoidal disturbance
of increasing amplitude, moving along the x-axis with velocity U , the velocity potential for
the inviscid gas motion can be assumed as

 =�(y) · eik(x−Ut)+!t (5)

Substituting from Equation (5) into Equation (2) yields:

@2y�− k2�=0 (6)

and the solution is

�(y)=�0 · e−ky (7)

Thus, the integration of Equation (5) gives

�=
�0

(! − ikU ) · ek(ix−y)+(!−ikU )t (8)

For an inviscid gas, the motion of oscillations on the liquid sheet surface causes a local
velocity of the gas in the y-direction, which is the vertical perturbation velocity v1. For the
boundary condition across the liquid–gas interface, the perturbation velocity should be equal
to the derivative of the interface displacement �:

v1 = @t� (9)

Combining Equations (9) and (3), the interface displacement � is

�=
@�
@y

(10)

Furthermore, substituting from Equation (8) into Equations (4) and (10) leads to the following
formulation for the gas pressure perturbation and the interface displacement:

p1 =�1(! − ikU )2�=k (11)

and

�=
−k�0

(! − ikU ) · ek(ix−y)+(!−ikU )t (12)

Considering the liquid sheet shown in Figure 1, the y-momentum equation for the liquid
in Equation (1) may be integrated in the y-direction and gives

�2@t(s · @t�)= − [(p2)upper − (p2)lower] + �2@x[s · @x(@t�)] (13)

where (p2)upper and (p2)lower represent the liquid pressure perturbations at the upper and lower
interfaces, and s is the sheet thickness. It should be noted that the thickness s is a function
of time t in the present study.
In a thermodynamic equilibrium state, the free energy of a liquid–gas system has to be

minimum [25]. Accordingly, for a two-dimensional system the pressure balance between two
phases separated by an interface possessing surface tension � should be

p�=p1 − p2 (14)
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where (p�) is the capillary pressure. Then, this relation may be applied to obtain the pressure
di�erence between the upper and lower interfaces:

(p�)upper − (p�)lower = [(p1)upper − (p1)lower]− [(p2)upper − (p2)lower] (15)

When a two-dimensional liquid sheet with small displacements in a thermodynamic equilib-
rium state is considered, the capillary pressures at the upper and lower interfaces, (p�)upper
and (p�)lower, are equal to ±�@x(@x�), respectively [25]. Therefore, the di�erence between
these two capillary pressures can be expressed as

(p�)upper − (p�)lower = 2� · @x(@x�) (16)

Furthermore, substituting from Equations (15) and (16) into Equation (13) yields:

�2(s · @2t �+ @ts · @t�)= − [(p1)upper − (p1)lower] + 2� · @x(@x�) + �2@x[s · @x(@t�)] (17)

where (p1)lower has an opposite sign to (p1)upper.
For simple representation and proper interpretation, all physical parameters will be nor-

malized in a dimensionless form in the following analysis. The characteristic length in this
problem is half of the sheet thickness h and the characteristic time is h=U . By substituting
Equations (11) and (12) into Equation (17) and using the magnitude analysis, a dispersion
equation describing the spatially growing disturbances on a two-dimensional liquid sheet can
be obtained in the following dimensionless form:

(�− iK)2 + K2(�− iK)=Re+ K2=We − �K =0 (18)

where the density ratio of gas to liquid �=�1=�2, the Reynolds number Re= hU=v2, the Weber
number We=�2U 2h=�, and K and � denote the dimensionless wave number and frequency,
respectively. Equation (18) can be further divided into the two following equations describing
the real and imaginary parts:

R : �2i − 2�iKr + (K2
r − K2

i ) + (2�iKrKi − 3K2
r Ki + K3

i )=Re − (K2
r − K2

i )=We+ �Kr = 0

I :−2�iKi + 2KrKi + (K3
r − 3KrK2

i −�iK2
r +�iK2

i )=Re − 2KrKi=We+ �Ki = 0 (19)

For given �ow conditions and wave number Kr , the system of non-linear equations was solved
simultaneously for the spatial growth rate Ki and wave frequency �i using the Newton–
Raphson method.

3. RELATIONS OF TEMPORAL AND SPATIAL INSTABILITIES

As liquid issues from a nozzle, its surface is subjected to disturbances. These include vi-
brations of the nozzle, gas motion surrounding the liquid surface, turbulence in the liquid,
and roughness of the nozzle inner wall. For linear stability analysis, the disturbances may be
described in a Fourier form:

�= �0 · eikx+!t (20)
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where �0 is the initial amplitude of the disturbance. In temporal instability analysis, the wave
number (k= kr) is a real number and the wave frequency (!=!r+i!i) is a complex number.
The real part of the frequency !r determines the degree of wave ampli�cation or damping,
and is de�ned as the temporal wave growth rate.
In the past, Squire [1] analysed the linear stability of an inviscid sheet of constant thick-

ness using the temporal method. Dombrowski and Johns [9] extended his study to a viscous
�lm of diminishing thickness for a more realistic consideration. In their temporal analyses,
a dispersion equation was derived from the equations of motion to predict the growth rate
!r of disturbance with wave number kr for a given �ow condition. The temporal dispersion
equation of Dombrowski and Johns [9] is given as

�2h!2r + �2hk2r !r + �k2r − �1krU 2 = 0 (21)

In order to compare with the spatial growth rates, the temporal growth rates !r for a spectrum
of wave numbers kr in Equation (21) were also computed in the present study.
On the other hand, it is necessary to discuss the relationship between the two growth rates.

According to Gaster’s study [16] for small rates of ampli�cation, the spatial growth is related
to the temporal growth by the dimensionless group velocity, @�i=@Kr , which is given as

(�r)T
(Ki)S

=
@�i

@Kr
(22)

where (�r)T and (Ki)S are the dimensionless growth rates of temporal and spatial theories
respectively. In the present study, our numerical results, as shown in Figure 2, con�rmed
Gaster’s theory [16] and the relationship between the temporal and spatial analyses of Lin
and Kang [19] for liquid cylindrical jets. Figure 2 demonstrates the solutions of dimensionless
wave frequency �i vs wave number Kr for the case of Re=1000, �=0:001, and We=300.

Figure 2. Dimensionless solutions of wave frequency �i vs a spectrum of disturbance wave
numbers Kr for a viscous liquid sheet.
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Figure 3. Comparison of spatial and temporal instability of sinuous
disturbances for a viscous liquid sheet.

In Figure 2, it is clear that the gradient ��i=�Kr of the present solutions is equal to one
and that the dimensional relation gives:

@�i

@Kr
=

@!i

U · @kr =1 and
@!i

@kr
=U (23)

As a matter of fact, the present spatial instability is based on an inertia frame, while the tempo-
rally growing disturbances of Dombrowski and Johns [9] may be viewed in a reference frame
travelling at the liquid velocity U . Therefore, the group velocity @!i=@kr appears to be the
velocity U and is veri�ed in Equation (23). By substituting the results of Equation (23) into
Gaster’s equation (22), the equal relationship of dimensionless temporal and spatial growth
rates (i.e. (�r)T = (Ki)S can be obtained for the case of Re=1000, �=0:001, and We=300.
This can also be validated by the solutions of growth rates for the same conditions, as shown
in Figure 3. In Figure 3, the dimensionless spatial and temporal growth rates of liquid �lm
instability are plotted as a function of dimensionless wave number. It can be seen that the
temporal growth rates (�r)T represented by a solid curve are essentially equal to the spatial
results (Ki)S represented by a dashed curve.

4. EFFECTS OF WEBER NUMBER

The Weber number is de�ned as We=�2U 2h=� and represents the ratio of the inertia force
to surface tension. For cylindrical liquid jets, the Weber number is an important physical
parameter to identify capillary breakup regimes. In the present study of a two-dimensional
liquid sheet, the Weber number also plays a critical role. Figure 4 shows dimensionless
variations of spatial and temporal growth rates of a spectrum of disturbance wave
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Figure 4. Comparison of spatial and temporal instability of sinuous disturbances for a viscous liquid
sheet at various Weber numbers (We=100, 200, and 300).

numbers for three di�erent Weber numbers. As shown in Figure 4, when the Weber number
is high, the temporal growth rates are basically the same as the spatial growth rates. It is
evident that the temporal results of Dombrowski and Johns [9] agreed quite well with the
present spatial solutions for these conditions of We= 100. The temporal results, as shown
in Figure 4, are similar to the theoretical studies for cylindrical jets at high Weber num-
bers [19, 27], which have shown a good agreement between the temporal predictions and
experiments.
However, the spatial instability predicted di�erent results from those of the temporal analy-

sis for low-speed liquid sheets where We¡100. Figures 5 and 6 demonstrate the discrepancy
between temporal and spatial instability as the Weber number fell below 100. This discrepancy
tends to be larger as the Weber number becomes smaller. It was observed that the temporal
theory of Dombrowski and Johns [9] underestimated the growth rates, especially for distur-
bances with long wavelengths. This explains why the temporal instability theory is unable
to predict accurately at low-�ow-rate conditions [28]. This result is similar to the results of
low-speed cylindrical jets described by Keller et al. [18] and Lin and Kang [19].
According to the present analysis for a two-dimensional liquid sheet, surface tension always

stabilizes the �ow. However, it can be a destabilizing factor in the case of low-speed cylindri-
cal jets [29] when the disturbance wavelength is larger than the jet circumference. Figures 4–
6 show that the �ow becomes more stable as surface tension increases when other parameters
keep constant. The Weber number can also imply the �ow rate when surface tension remains
constant. The maximum growth rate tends to be higher and shifts toward the shorter wave-
length range with the increase of Weber number. This indicates that, for a two-dimensional
liquid �lm, the breakup length becomes shorter and drop size becomes smaller as the �ow
rate increases.
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Figure 5. Comparison of spatial and temporal instability of sinuous disturbances for a viscous liquid
sheet at various Weber numbers (We=20, 50, and 80).

Figure 6. Comparison of spatial and temporal instability of sinuous disturbances for a viscous liquid
sheet at various Weber numbers (We=5, 10, and 15).

5. EFFECTS OF REYNOLDS NUMBER

As expected, the liquid’s viscosity is a damping factor during the process of wave growth. As
indicated in Figure 7, the maximum growth rate decreases as the Reynolds number decreases.
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Figure 7. Comparison of spatial and temporal instability of sinuous disturbances for a viscous liquid
sheet at various Reynolds numbers (Re=1, 10, and 100).

Figure 8. Close-up plots of dimensionless wave growth rate vs wave number for
a viscous liquid sheet (We=100, Re=1, �=0:1).

It should be noted that there is a slight deviation between the temporal and spatial results for all
values of Re. This again indicates that the temporal theory tends to underestimate the growth
rates at relatively low �ow conditions. With a decrease in Reynolds number, the deviations
between the two theories become larger, especially for small wave numbers. This can be
observed more clearly in the close-up plots of Re=1 and 10, as shown in Figures 8 and 9.
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Figure 9. Close-up plots of dimensionless wave growth rate vs wave number for a
viscous liquid sheet (We=100, Re=10, �=0:1).

It is interesting that, in Figure 7, the growth rates for the larger wave numbers decrease
signi�cantly as the Reynolds number decreases. In other words, the decreasing rate of the
shorter-wave growth rates is higher than that of the longer-wave growth rates when the �ow
viscosity is increased. Waves of very small length are di�cult to be excited because of
viscous dissipation. Waves of very long length have relatively low growth rates and are slow
to develop due to inertial e�ects. Between the extremely short and long wavelengths, there
exists a growth peak, which corresponds to the most unstable wave. In Figure 8, the case of
Re=1 clearly demonstrates these phenomena. In addition, the maximum growth rate appears
in the smaller wave number range when the �ow becomes more viscous, as shown in Figures
7–9. This implies that, for a very viscous liquid sheet, only large drops and ligaments can be
formed during the breakup process.

6. EFFECTS OF DENSITY RATIO

The relation between the growth rate and the wave number is shown in Figure 10 for the
cases of gas=liquid density ratio �=0:001, 0.005, and 0.01. If the case of �=0:001 represents
water in air at room temperature and one atmosphere, then the approximate pressures of the
ambience for �=0:005 and 0.01 are 5 and 10 atm, respectively, at room temperature. Similar to
the e�ects of the Weber number, the growth rates are increased and the maximum growth rate
shifts to a smaller wavelength range as the gas=liquid density ratio is increased. Accordingly,
the liquid �lm becomes more unstable and atomization will be �ner in the higher-pressure
environment due to the inertia e�ect of air on the disturbance waves. In Figure 10, the
discrepancy between the spatial and temporal solutions is not signi�cant.
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Figure 10. Dimensionless wave growth rate vs wave number for a viscous liquid sheet at various
gas=liquid density ratios (�=0:001, 0.005, and 0.01).

7. CRITICAL WAVE NUMBER AND WAVELENGTH

It should be noted that there exists a critical wave number (i.e. cut-o� wave number), which
distinguishes the stable and unstable wave disturbances for each case. Disturbances that have
wave numbers larger than the critical wave number will not grow (i.e. Ki=0). Thus, the
dimensionless critical wave number, Kc, can be obtained analytically through Equation (19)
and expressed as follows:

Kc =�We (24)

This can also be veri�ed graphically from the results of Figures 4–10. In dimensional terms,
Equation (24) can be expressed as

�c =
2�h

� · We
=
2��
�1U 2 (25)

where �c is the critical wavelength. It means that disturbances with wavelengths shorter than
the critical wavelength are stable; otherwise, they are unstable and their growth rates are
positive. It is interesting that, according to Equation (25), the impact of the capillary length
�=�1U 2 on the disturbance wave instability for a two-dimensional liquid sheet is exactly the
same as its role in cylindrical jets [25].
Based on Equation (25), the gas=liquid density ratio and the Weber number determine the

wavelength range of unstable disturbances and the shortest wavelength in this range. For the
cases of �=0:001, 0.005, and 0.01 in Figure 10, the shortest unstable wavelengths are 6.28,
1.256, and 0:628mm, respectively, if half of the liquid sheet thickness h=0:1mm is assumed.
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Similarly, for the cases of various Weber numbers in Figures 4–6, the unstable wave range
and the shortest wavelength can also be obtained.

8. CONCLUSIONS

The major conclusions of the present study are as follows:

1. The Weber number is the most important variable a�ecting the discrepancy between
spatial and temporal instability.

2. For a two-dimensional liquid sheet, the temporal instability analysis provides reasonably
accurate solutions of growth rates for conditions with Weber numbers greater than 100.

3. The temporal theory generally underestimates growth rates. The discrepancy between the
results of temporal and spatial theory increases as the Weber number decreases.

4. The theories of both temporal and spatial instability predict that �ow disturbances be-
come more unstable and the disturbance with a maximum growth rate shifts toward the
shorter wavelength range as either the Weber number or the gas=liquid density ratio in-
creases. This indicates that a two-dimensional liquid �lm has a shorter breakup length
and produces �ner drops at higher �ow rate or pressure conditions.

5. For a two-dimensional sheet, liquid viscosity and surface tension always play a role of
stabilizing the �ow disturbances. For a very viscous liquid sheet, only large drops and
ligaments are formed during sheet breakup.

6. A critical wave number can be identi�ed from the Weber number and gas=liquid density
ratio to distinguish the stable and unstable �ow disturbance regimes for a two-dimensional
liquid sheet.
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